Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noncommutative Differential Calculus Structure on Secondary Hochschild (co)homology (2102.07095v3)

Published 14 Feb 2021 in math.RA and math.KT

Abstract: Let $B$ be a commutative algebra and $A$ be a $B$-algebra (determined by an algebra homomorphism $\varepsilon:B\rightarrow A$). M. D. Staic introduced a Hochschild like cohomology $H{\bullet}((A,B,\varepsilon);A)$ called secondary Hochschild cohomology, to describe the non-trivial $B$-algebra deformations of $A$. J. Laubacher et al later obtained a natural construction of a new chain (and cochain) complex $\overline{C}{\bullet}(A,B,\varepsilon)$ (resp. $\overline{C}{\bullet}(A,B,\varepsilon)$) in the process of introducing the secondary cyclic (co)homology. It turns out that unlike the classical case of associative algebras (over a field), there exist different (co)chain complexes for the $B$-algebra $A$. In this paper, we establish a connection between the two (co)homology theories for $B$-algebra $A$. We show that the pair $\big(H{\bullet}((A,B,\varepsilon);A),HH{\bullet}(A,B,\varepsilon)\big)$ forms a non-commutative differential calculus, where $HH_{\bullet}(A,B,\varepsilon)$ denotes the homology of the complex $\overline{C}_{\bullet}(A,B,\varepsilon)$.

Summary

We haven't generated a summary for this paper yet.