Papers
Topics
Authors
Recent
Search
2000 character limit reached

Matching Point Sets with Quantum Circuit Learning

Published 12 Feb 2021 in cs.CV and cs.LG | (2102.06697v2)

Abstract: In this work, we propose a parameterised quantum circuit learning approach to point set matching problem. In contrast to previous annealing-based methods, we propose a quantum circuit-based framework whose parameters are optimised via descending the gradients w.r.t a kernel-based loss function. We formulate the shape matching problem into a distribution learning task; that is, to learn the distribution of the optimal transformation parameters. We show that this framework is able to find multiple optimal solutions for symmetric shapes and is more accurate, scalable and robust than the previous annealing-based method. Code, data and pre-trained weights are available at the project page: \href{https://hansen7.github.io/qKC}{https://hansen7.github.io/qKC}

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.