Hyperbolicity cones are amenable (2102.06359v2)
Abstract: Amenability is a notion of facial exposedness for convex cones that is stronger than being facially dual complete (or "nice") which is, in turn, stronger than merely being facially exposed. Hyperbolicity cones are a family of algebraically structured closed convex cones that contain all spectrahedral cones (linear sections of positive semidefinite cones) as special cases. It is known that all spectrahedral cones are amenable. We establish that all hyperbolicity cones are amenable. As part of the argument, we show that any face of a hyperbolicity cone is a hyperbolicity cone. As a corollary, we show that the intersection of two hyperbolicity cones, not necessarily sharing a common relative interior point, is a hyperbolicity cone.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.