Hardware-aware $in \ situ$ Boltzmann machine learning using stochastic magnetic tunnel junctions (2102.05137v2)
Abstract: One of the big challenges of current electronics is the design and implementation of hardware neural networks that perform fast and energy-efficient machine learning. Spintronics is a promising catalyst for this field with the capabilities of nanosecond operation and compatibility with existing microelectronics. Considering large-scale, viable neuromorphic systems however, variability of device properties is a serious concern. In this paper, we show an autonomously operating circuit that performs hardware-aware machine learning utilizing probabilistic neurons built with stochastic magnetic tunnel junctions. We show that $in \ situ$ learning of weights and biases in a Boltzmann machine can counter device-to-device variations and learn the probability distribution of meaningful operations such as a full adder. This scalable autonomously operating learning circuit using spintronics-based neurons could be especially of interest for standalone artificial-intelligence devices capable of fast and efficient learning at the edge.