Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wake Word Detection with Streaming Transformers (2102.04488v1)

Published 8 Feb 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Modern wake word detection systems usually rely on neural networks for acoustic modeling. Transformers has recently shown superior performance over LSTM and convolutional networks in various sequence modeling tasks with their better temporal modeling power. However it is not clear whether this advantage still holds for short-range temporal modeling like wake word detection. Besides, the vanilla Transformer is not directly applicable to the task due to its non-streaming nature and the quadratic time and space complexity. In this paper we explore the performance of several variants of chunk-wise streaming Transformers tailored for wake word detection in a recently proposed LF-MMI system, including looking-ahead to the next chunk, gradient stopping, different positional embedding methods and adding same-layer dependency between chunks. Our experiments on the Mobvoi wake word dataset demonstrate that our proposed Transformer model outperforms the baseline convolution network by 25% on average in false rejection rate at the same false alarm rate with a comparable model size, while still maintaining linear complexity w.r.t. the sequence length.

Citations (32)

Summary

We haven't generated a summary for this paper yet.