Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Online Planning for Bipedal Locomotion via Centroidal Model Predictive Gait Synthesis (2102.04122v3)

Published 8 Feb 2021 in cs.RO

Abstract: The planning of whole-body motion and step time for bipedal locomotion is constructed as a model predictive control (MPC) problem, in which a sequence of optimization problems needs to be solved online. While directly solving these problems is extremely time-consuming, we propose a predictive gait synthesizer to offer immediate solutions. Based on the full-dimensional model, a library of gaits with different speeds and periods is first constructed offline. Then the proposed gait synthesizer generates real-time gaits at 1kHz by synthesizing the gait library based on the online prediction of centroidal dynamics. We prove that the constructed MPC problem can ensure the uniform ultimate boundedness (UUB) of the CoM states and show that our proposed gait synthesizer can provide feasible solutions to the MPC optimization problems. Simulation and experimental results on a bipedal robot with 8 degrees of freedom (DoF) are provided to show the performance and robustness of this approach.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com