Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Framework for Zero-Shot Sketch-Based Image Retrieval (2102.04016v1)

Published 8 Feb 2021 in cs.CV

Abstract: Recently, Zero-shot Sketch-based Image Retrieval (ZS-SBIR) has attracted the attention of the computer vision community due to it's real-world applications, and the more realistic and challenging setting than found in SBIR. ZS-SBIR inherits the main challenges of multiple computer vision problems including content-based Image Retrieval (CBIR), zero-shot learning and domain adaptation. The majority of previous studies using deep neural networks have achieved improved results through either projecting sketch and images into a common low-dimensional space or transferring knowledge from seen to unseen classes. However, those approaches are trained with complex frameworks composed of multiple deep convolutional neural networks (CNNs) and are dependent on category-level word labels. This increases the requirements on training resources and datasets. In comparison, we propose a simple and efficient framework that does not require high computational training resources, and can be trained on datasets without semantic categorical labels. Furthermore, at training and inference stages our method only uses a single CNN. In this work, a pre-trained ImageNet CNN (e.g., ResNet50) is fine-tuned with three proposed learning objects: domain-aware quadruplet loss, semantic classification loss, and semantic knowledge preservation loss. The domain-aware quadruplet and semantic classification losses are introduced to learn discriminative, semantic and domain invariant features through considering ZS-SBIR as object detection and verification problem. ...

Citations (43)

Summary

We haven't generated a summary for this paper yet.