Papers
Topics
Authors
Recent
2000 character limit reached

Meta Discovery: Learning to Discover Novel Classes given Very Limited Data

Published 8 Feb 2021 in cs.LG | (2102.04002v4)

Abstract: In novel class discovery (NCD), we are given labeled data from seen classes and unlabeled data from unseen classes, and we train clustering models for the unseen classes. However, the implicit assumptions behind NCD are still unclear. In this paper, we demystify assumptions behind NCD and find that high-level semantic features should be shared among the seen and unseen classes. Based on this finding, NCD is theoretically solvable under certain assumptions and can be naturally linked to meta-learning that has exactly the same assumption as NCD. Thus, we can empirically solve the NCD problem by meta-learning algorithms after slight modifications. This meta-learning-based methodology significantly reduces the amount of unlabeled data needed for training and makes it more practical, as demonstrated in experiments. The use of very limited data is also justified by the application scenario of NCD: since it is unnatural to label only seen-class data, NCD is sampling instead of labeling in causality. Therefore, unseen-class data should be collected on the way of collecting seen-class data, which is why they are novel and first need to be clustered.

Citations (41)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.