Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sill-Net: Feature Augmentation with Separated Illumination Representation

Published 6 Feb 2021 in cs.CV | (2102.03539v3)

Abstract: For visual object recognition tasks, the illumination variations can cause distinct changes in object appearance and thus confuse the deep neural network based recognition models. Especially for some rare illumination conditions, collecting sufficient training samples could be time-consuming and expensive. To solve this problem, in this paper we propose a novel neural network architecture called Separating-Illumination Network (Sill-Net). Sill-Net learns to separate illumination features from images, and then during training we augment training samples with these separated illumination features in the feature space. Experimental results demonstrate that our approach outperforms current state-of-the-art methods in several object classification benchmarks.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.