Papers
Topics
Authors
Recent
2000 character limit reached

Sound Event Detection in Urban Audio With Single and Multi-Rate PCEN

Published 6 Feb 2021 in eess.AS, cs.LG, and cs.SD | (2102.03468v1)

Abstract: Recent literature has demonstrated that the use of per-channel energy normalization (PCEN), has significant performance improvements over traditional log-scaled mel-frequency spectrograms in acoustic sound event detection (SED) in a multi-class setting with overlapping events. However, the configuration of PCEN's parameters is sensitive to the recording environment, the characteristics of the class of events of interest, and the presence of multiple overlapping events. This leads to improvements on a class-by-class basis, but poor cross-class performance. In this article, we experiment using PCEN spectrograms as an alternative method for SED in urban audio using the UrbanSED dataset, demonstrating per-class improvements based on parameter configuration. Furthermore, we address cross-class performance with PCEN using a novel method, Multi-Rate PCEN (MRPCEN). We demonstrate cross-class SED performance with MRPCEN, demonstrating improvements to cross-class performance compared to traditional single-rate PCEN.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.