Papers
Topics
Authors
Recent
2000 character limit reached

Custom Object Detection via Multi-Camera Self-Supervised Learning

Published 5 Feb 2021 in cs.CV and cs.AI | (2102.03442v1)

Abstract: This paper proposes MCSSL, a self-supervised learning approach for building custom object detection models in multi-camera networks. MCSSL associates bounding boxes between cameras with overlapping fields of view by leveraging epipolar geometry and state-of-the-art tracking and reID algorithms, and prudently generates two sets of pseudo-labels to fine-tune backbone and detection networks respectively in an object detection model. To train effectively on pseudo-labels,a powerful reID-like pretext task with consistency loss is constructed for model customization. Our evaluation shows that compared with legacy selftraining methods, MCSSL improves average mAP by 5.44% and 6.76% on WildTrack and CityFlow dataset, respectively.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.