Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Reproducibility of Neural Network Predictions (2102.03349v1)

Published 5 Feb 2021 in cs.LG

Abstract: Standard training techniques for neural networks involve multiple sources of randomness, e.g., initialization, mini-batch ordering and in some cases data augmentation. Given that neural networks are heavily over-parameterized in practice, such randomness can cause {\em churn} -- for the same input, disagreements between predictions of the two models independently trained by the same algorithm, contributing to the `reproducibility challenges' in modern machine learning. In this paper, we study this problem of churn, identify factors that cause it, and propose two simple means of mitigating it. We first demonstrate that churn is indeed an issue, even for standard image classification tasks (CIFAR and ImageNet), and study the role of the different sources of training randomness that cause churn. By analyzing the relationship between churn and prediction confidences, we pursue an approach with two components for churn reduction. First, we propose using \emph{minimum entropy regularizers} to increase prediction confidences. Second, \changes{we present a novel variant of co-distillation approach~\citep{anil2018large} to increase model agreement and reduce churn}. We present empirical results showing the effectiveness of both techniques in reducing churn while improving the accuracy of the underlying model.

Citations (34)

Summary

We haven't generated a summary for this paper yet.