Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distilling Influences to Mitigate Prediction Churn in Graph Neural Networks (2310.00946v1)

Published 2 Oct 2023 in cs.LG and cs.AI

Abstract: Models with similar performances exhibit significant disagreement in the predictions of individual samples, referred to as prediction churn. Our work explores this phenomenon in graph neural networks by investigating differences between models differing only in their initializations in their utilized features for predictions. We propose a novel metric called Influence Difference (ID) to quantify the variation in reasons used by nodes across models by comparing their influence distribution. Additionally, we consider the differences between nodes with a stable and an unstable prediction, positing that both equally utilize different reasons and thus provide a meaningful gradient signal to closely match two models even when the predictions for nodes are similar. Based on our analysis, we propose to minimize this ID in Knowledge Distillation, a domain where a new model should closely match an established one. As an efficient approximation, we introduce DropDistillation (DD) that matches the output for a graph perturbed by edge deletions. Our empirical evaluation of six benchmark datasets for node classification validates the differences in utilized features. DD outperforms previous methods regarding prediction stability and overall performance in all considered Knowledge Distillation experiments.

Summary

We haven't generated a summary for this paper yet.