Papers
Topics
Authors
Recent
2000 character limit reached

Locally Adaptive Label Smoothing for Predictive Churn

Published 9 Feb 2021 in cs.LG and cs.AI | (2102.05140v2)

Abstract: Training modern neural networks is an inherently noisy process that can lead to high \emph{prediction churn} -- disagreements between re-trainings of the same model due to factors such as randomization in the parameter initialization and mini-batches -- even when the trained models all attain similar accuracies. Such prediction churn can be very undesirable in practice. In this paper, we present several baselines for reducing churn and show that training on soft labels obtained by adaptively smoothing each example's label based on the example's neighboring labels often outperforms the baselines on churn while improving accuracy on a variety of benchmark classification tasks and model architectures.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.