Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally Adaptive Label Smoothing for Predictive Churn (2102.05140v2)

Published 9 Feb 2021 in cs.LG and cs.AI

Abstract: Training modern neural networks is an inherently noisy process that can lead to high \emph{prediction churn} -- disagreements between re-trainings of the same model due to factors such as randomization in the parameter initialization and mini-batches -- even when the trained models all attain similar accuracies. Such prediction churn can be very undesirable in practice. In this paper, we present several baselines for reducing churn and show that training on soft labels obtained by adaptively smoothing each example's label based on the example's neighboring labels often outperforms the baselines on churn while improving accuracy on a variety of benchmark classification tasks and model architectures.

Citations (8)

Summary

We haven't generated a summary for this paper yet.