Papers
Topics
Authors
Recent
2000 character limit reached

Deep reinforcement learning for smart calibration of radio telescopes

Published 5 Feb 2021 in astro-ph.IM, cs.AI, and cs.LG | (2102.03200v3)

Abstract: Modern radio telescopes produce unprecedented amounts of data, which are passed through many processing pipelines before the delivery of scientific results. Hyperparameters of these pipelines need to be tuned by hand to produce optimal results. Because many thousands of observations are taken during a lifetime of a telescope and because each observation will have its unique settings, the fine tuning of pipelines is a tedious task. In order to automate this process of hyperparameter selection in data calibration pipelines, we introduce the use of reinforcement learning. We test two reinforcement learning techniques, twin delayed deep deterministic policy gradient (TD3) and soft actor-critic (SAC), to train an autonomous agent to perform this fine tuning. For the sake of generalization, we consider the pipeline to be a black-box system where the summarized state of the performance of the pipeline is used by the autonomous agent. The autonomous agent trained in this manner is able to determine optimal settings for diverse observations and is therefore able to perform 'smart' calibration, minimizing the need for human intervention.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.