Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-World Super-Resolution of Face-Images from Surveillance Cameras (2102.03113v1)

Published 5 Feb 2021 in cs.CV

Abstract: Most existing face image Super-Resolution (SR) methods assume that the Low-Resolution (LR) images were artificially downsampled from High-Resolution (HR) images with bicubic interpolation. This operation changes the natural image characteristics and reduces noise. Hence, SR methods trained on such data most often fail to produce good results when applied to real LR images. To solve this problem, we propose a novel framework for generation of realistic LR/HR training pairs. Our framework estimates realistic blur kernels, noise distributions, and JPEG compression artifacts to generate LR images with similar image characteristics as the ones in the source domain. This allows us to train a SR model using high quality face images as Ground-Truth (GT). For better perceptual quality we use a Generative Adversarial Network (GAN) based SR model where we have exchanged the commonly used VGG-loss [24] with LPIPS-loss [52]. Experimental results on both real and artificially corrupted face images show that our method results in more detailed reconstructions with less noise compared to existing State-of-the-Art (SoTA) methods. In addition, we show that the traditional non-reference Image Quality Assessment (IQA) methods fail to capture this improvement and demonstrate that the more recent NIMA metric [16] correlates better with human perception via Mean Opinion Rank (MOR).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Andreas Aakerberg (1 paper)
  2. Kamal Nasrollahi (16 papers)
  3. Thomas B. Moeslund (51 papers)
Citations (31)

Summary

We haven't generated a summary for this paper yet.