Papers
Topics
Authors
Recent
2000 character limit reached

Deep Reinforcement Learning for Energy-Efficient Beamforming Design in Cell-Free Networks (2102.03077v1)

Published 5 Feb 2021 in cs.IT, eess.SP, and math.IT

Abstract: Cell-free network is considered as a promising architecture for satisfying more demands of future wireless networks, where distributed access points coordinate with an edge cloud processor to jointly provide service to a smaller number of user equipments in a compact area. In this paper, the problem of uplink beamforming design is investigated for maximizing the long-term energy efficiency (EE) with the aid of deep reinforcement learning (DRL) in the cell-free network. Firstly, based on the minimum mean square error channel estimation and exploiting successive interference cancellation for signal detection, the expression of signal to interference plus noise ratio (SINR) is derived. Secondly, according to the formulation of SINR, we define the long-term EE, which is a function of beamforming matrix. Thirdly, to address the dynamic beamforming design with continuous state and action space, a DRL-enabled beamforming design is proposed based on deep deterministic policy gradient (DDPG) algorithm by taking the advantage of its double-network architecture. Finally, the results of simulation indicate that the DDPG-based beamforming design is capable of converging to the optimal EE performance. Furthermore, the influence of hyper-parameters on the EE performance of the DDPG-based beamforming design is investigated, and it is demonstrated that an appropriate discount factor and hidden layers size can facilitate the EE performance.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.