Perturbative diagonalisation for Maryland-type quasiperiodic operators with flat pieces
Abstract: We consider quasiperiodic operators on $\mathbb Zd$ with unbounded monotone sampling functions ("Maryland-type"), which are not required to be strictly monotone and are allowed to have flat segments. Under several geometric conditions on the frequencies, lengths of the segments, and their positions, we show that these operators enjoy Anderson localization at large disorder.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.