Papers
Topics
Authors
Recent
2000 character limit reached

Disambiguation of weak supervision with exponential convergence rates

Published 4 Feb 2021 in cs.LG, cs.AI, and stat.ML | (2102.02789v3)

Abstract: Machine learning approached through supervised learning requires expensive annotation of data. This motivates weakly supervised learning, where data are annotated with incomplete yet discriminative information. In this paper, we focus on partial labelling, an instance of weak supervision where, from a given input, we are given a set of potential targets. We review a disambiguation principle to recover full supervision from weak supervision, and propose an empirical disambiguation algorithm. We prove exponential convergence rates of our algorithm under classical learnability assumptions, and we illustrate the usefulness of our method on practical examples.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.