Papers
Topics
Authors
Recent
Search
2000 character limit reached

Model Calibration via Distributionally Robust Optimization: On the NASA Langley Uncertainty Quantification Challenge

Published 3 Feb 2021 in stat.ME and math.OC | (2102.01840v1)

Abstract: We study a methodology to tackle the NASA Langley Uncertainty Quantification Challenge, a model calibration problem under both aleatory and epistemic uncertainties. Our methodology is based on an integration of robust optimization, more specifically a recent line of research known as distributionally robust optimization, and importance sampling in Monte Carlo simulation. The main computation machinery in this integrated methodology amounts to solving sampled linear programs. We present theoretical statistical guarantees of our approach via connections to nonparametric hypothesis testing, and numerical performances including parameter calibration and downstream decision and risk evaluation tasks.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.