Papers
Topics
Authors
Recent
2000 character limit reached

Recurrent Neural Network for MoonBoard Climbing Route Classification and Generation

Published 2 Feb 2021 in cs.LG and cs.CV | (2102.01788v1)

Abstract: Classifying the difficulties of climbing routes and generating new routes are both challenging. Existing machine learning models not only fail to accurately predict a problem's difficulty, but they are also unable to generate reasonable problems. In this work, we introduced "BetaMove", a new move preprocessing pipeline we developed, in order to mimic a human climber's hand sequence. The preprocessed move sequences were then used to train both a route generator and a grade predictor. By preprocessing a MoonBoard problem into a proper move sequence, the accuracy of our grade predictor reaches near human-level performance, and our route generator produces new routes of much better quality compared to previous work. We demonstrated that with BetaMove, we are able to inject human insights into the machine learning problems, and this can be the foundations for future transfer learning on climbing style classification problems.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.