Papers
Topics
Authors
Recent
2000 character limit reached

Majorizing Measures, Sequential Complexities, and Online Learning

Published 2 Feb 2021 in stat.ML and cs.LG | (2102.01729v1)

Abstract: We introduce the technique of generic chaining and majorizing measures for controlling sequential Rademacher complexity. We relate majorizing measures to the notion of fractional covering numbers, which we show to be dominated in terms of sequential scale-sensitive dimensions in a horizon-independent way, and, under additional complexity assumptions establish a tight control on worst-case sequential Rademacher complexity in terms of the integral of sequential scale-sensitive dimension. Finally, we establish a tight contraction inequality for worst-case sequential Rademacher complexity. The above constitutes the resolution of a number of outstanding open problems in extending the classical theory of empirical processes to the sequential case, and, in turn, establishes sharp results for online learning.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.