Papers
Topics
Authors
Recent
2000 character limit reached

A Novel Use of Discrete Wavelet Transform Features in the Prediction of Epileptic Seizures from EEG Data

Published 31 Jan 2021 in cs.CE, cs.LG, eess.SP, and stat.OT | (2102.01647v1)

Abstract: This paper demonstrates the predictive superiority of discrete wavelet transform (DWT) over previously used methods of feature extraction in the diagnosis of epileptic seizures from EEG data. Classification accuracy, specificity, and sensitivity are used as evaluation metrics. We specifically show the immense potential of 2 combinations (DWT-db4 combined with SVM and DWT-db2 combined with RF) as compared to others when it comes to diagnosing epileptic seizures either in the balanced or the imbalanced dataset. The results also highlight that MFCC performs less than all the DWT used in this study and that, The mean-differences are statistically significant respectively in the imbalanced and balanced dataset. Finally, either in the balanced or the imbalanced dataset, the feature extraction techniques, the models, and the interaction between them have a statistically significant effect on the classification accuracy.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.