Papers
Topics
Authors
Recent
2000 character limit reached

Ultrasound Image Classification using ACGAN with Small Training Dataset

Published 31 Jan 2021 in eess.IV and cs.CV | (2102.01539v1)

Abstract: B-mode ultrasound imaging is a popular medical imaging technique. Like other image processing tasks, deep learning has been used for analysis of B-mode ultrasound images in the last few years. However, training deep learning models requires large labeled datasets, which is often unavailable for ultrasound images. The lack of large labeled data is a bottleneck for the use of deep learning in ultrasound image analysis. To overcome this challenge, in this work we exploit Auxiliary Classifier Generative Adversarial Network (ACGAN) that combines the benefits of data augmentation and transfer learning in the same framework. We conduct experiment on a dataset of breast ultrasound images that shows the effectiveness of the proposed approach.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.