Papers
Topics
Authors
Recent
2000 character limit reached

Event-Driven LSTM For Forex Price Prediction

Published 29 Jan 2021 in q-fin.ST | (2102.01499v1)

Abstract: The majority of studies in the field of AI guided financial trading focus on purely applying machine learning algorithms to continuous historical price and technical analysis data. However, due to non-stationary and high volatile nature of Forex market most algorithms fail when put into real practice. We developed novel event-driven features which indicate a change of trend in direction. We then build long deep learning models to predict a retracement point providing a perfect entry point to gain maximum profit. We use a simple recurrent neural network (RNN) as our baseline model and compared with short-term memory (LSTM), bidirectional long short-term memory (BiLSTM) and gated recurrent unit (GRU). Our experiment results show that the proposed event-driven feature selection together with the proposed models can form a robust prediction system which supports accurate trading strategies with minimal risk. Our best model on 15-minutes interval data for the EUR/GBP currency achieved RME 0.006x10-3 , RMSE 2.407x10-3, MAE 1.708x10-3, MAPE 0.194% outperforming previous studies.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.