Papers
Topics
Authors
Recent
2000 character limit reached

Machine-Learned Phase Diagrams of Generalized Kitaev Honeycomb Magnets

Published 1 Feb 2021 in cond-mat.str-el, cond-mat.mtrl-sci, and cs.LG | (2102.01103v2)

Abstract: We use a recently developed interpretable and unsupervised machine-learning method, the tensorial kernel support vector machine (TK-SVM), to investigate the low-temperature classical phase diagram of a generalized Heisenberg-Kitaev-$\Gamma$ ($J$-$K$-$\Gamma$) model on a honeycomb lattice. Aside from reproducing phases reported by previous quantum and classical studies, our machine finds a hitherto missed nested zigzag-stripy order and establishes the robustness of a recently identified modulated $S_3 \times Z_3$ phase, which emerges through the competition between the Kitaev and $\Gamma$ spin liquids, against Heisenberg interactions. The results imply that, in the restricted parameter space spanned by the three primary exchange interactions -- $J$, $K$, and $\Gamma$, the representative Kitaev material $\alpha$-${\rm RuCl}_3$ lies close to the boundaries of several phases, including a simple ferromagnet, the unconventional $S_3 \times Z_3$ and nested zigzag-stripy magnets. A zigzag order is stabilized by a finite $\Gamma{\prime}$ and/or $J_3$ term, whereas the four magnetic orders may compete in particular if $\Gamma{\prime}$ is anti-ferromagnetic.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.