Papers
Topics
Authors
Recent
2000 character limit reached

Evolutionary Algorithms for Fuzzy Cognitive Maps

Published 19 Dec 2020 in cs.NE and cs.AI | (2102.01012v1)

Abstract: Fuzzy Cognitive Maps (FCMs) is a complex systems modeling technique which, due to its unique advantages, has lately risen in popularity. They are based on graphs that represent the causal relationships among the parameters of the system to be modeled, and they stand out for their interpretability and flexibility. With the late popularity of FCMs, a plethora of research efforts have taken place to develop and optimize the model. One of the most important elements of FCMs is the learning algorithm they use, and their effectiveness is largely determined by it. The learning algorithms learn the node weights of an FCM, with the goal of converging towards the desired behavior. The present study reviews the genetic algorithms used for training FCMs, as well as gives a general overview of the FCM learning algorithms, putting evolutionary computing into the wider context.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.