Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Inspired Adaptive Boosting (2102.00949v1)

Published 1 Feb 2021 in quant-ph, cs.DS, and cs.LG

Abstract: Building on the quantum ensemble based classifier algorithm of Schuld and Petruccione [arXiv:1704.02146v1], we devise equivalent classical algorithms which show that this quantum ensemble method does not have advantage over classical algorithms. Essentially, we simplify their algorithm until it is intuitive to come up with an equivalent classical version. One of the classical algorithms is extremely simple and runs in constant time for each input to be classified. We further develop the idea and, as the main contribution of the paper, we propose methods inspired by combining the quantum ensemble method with adaptive boosting. The algorithms were tested and found to be comparable to the AdaBoost algorithm on publicly available data sets.

Summary

We haven't generated a summary for this paper yet.