Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hybrid Beamforming for mmWave MU-MISO Systems Exploiting Multi-agent Deep Reinforcement Learning

Published 1 Feb 2021 in eess.SP, cs.AI, and cs.LG | (2102.00735v1)

Abstract: In this letter, we investigate the hybrid beamforming based on deep reinforcement learning (DRL) for millimeter Wave (mmWave) multi-user (MU) multiple-input-single-output (MISO) system. A multi-agent DRL method is proposed to solve the exploration efficiency problem in DRL. In the proposed method, prioritized replay buffer and more informative reward are applied to accelerate the convergence. Simulation results show that the proposed architecture achieves higher spectral efficiency and less time consumption than the benchmarks, thus is more suitable for practical applications.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.