Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatiotemporal Ground Reaction Force Analysis using Convolutional Neural Networks to Analyze Parkinsonian Gait (2102.00628v1)

Published 1 Feb 2021 in cs.LG and eess.SP

Abstract: Parkinson's disease (PD) is a non-curable disease that commonly found among elders that greatly reduce their quality of life. PD primarily affects the gait pattern and slowly changes the walking gait from the normality to disability. The early diagnosing of PD is important for treatments and gait pattern analysis is used as a technique to diagnose PD. The present paper has identified the raw spatiotemporal ground reaction force (GRF) as a key parameter to identify the changes in human gait patterns associated with PD. The changes in GRF are identified using a convolutional neural network through pre-processing, conversion, recognition, and performance evaluation. The proposed algorithm is capable of identifying the severity of the PD and distinguishing the parkinsonian gait from the healthy gait. The technique has shown a 97% of accuracy in automatic decision-making process.

Summary

We haven't generated a summary for this paper yet.