Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AACP: Model Compression by Accurate and Automatic Channel Pruning (2102.00390v1)

Published 31 Jan 2021 in cs.CV

Abstract: Channel pruning is formulated as a neural architecture search (NAS) problem recently. However, existing NAS-based methods are challenged by huge computational cost and inflexibility of applications. How to deal with multiple sparsity constraints simultaneously and speed up NAS-based channel pruning are still open challenges. In this paper, we propose a novel Accurate and Automatic Channel Pruning (AACP) method to address these problems. Firstly, AACP represents the structure of a model as a structure vector and introduces a pruning step vector to control the compressing granularity of each layer. Secondly, AACP utilizes Pruned Structure Accuracy Estimator (PSAE) to speed up the performance estimation process. Thirdly, AACP proposes Improved Differential Evolution (IDE) algorithm to search the optimal structure vector effectively. Because of IDE, AACP can deal with FLOPs constraint and model size constraint simultaneously and efficiently. Our method can be easily applied to various tasks and achieve state of the art performance. On CIFAR10, our method reduces $65\%$ FLOPs of ResNet110 with an improvement of $0.26\%$ top-1 accuracy. On ImageNet, we reduce $42\%$ FLOPs of ResNet50 with a small loss of $0.18\%$ top-1 accuracy and reduce $30\%$ FLOPs of MobileNetV2 with a small loss of $0.7\%$ top-1 accuracy. The source code will be released after publication.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lanbo Lin (1 paper)
  2. Yujiu Yang (155 papers)
  3. Zhenhua Guo (28 papers)
Citations (10)