Papers
Topics
Authors
Recent
2000 character limit reached

Structure-Aware Audio-to-Score Alignment using Progressively Dilated Convolutional Neural Networks

Published 31 Jan 2021 in cs.SD, cs.LG, and eess.AS | (2102.00382v2)

Abstract: The identification of structural differences between a music performance and the score is a challenging yet integral step of audio-to-score alignment, an important subtask of music information retrieval. We present a novel method to detect such differences between the score and performance for a given piece of music using progressively dilated convolutional neural networks. Our method incorporates varying dilation rates at different layers to capture both short-term and long-term context, and can be employed successfully in the presence of limited annotated data. We conduct experiments on audio recordings of real performances that differ structurally from the score, and our results demonstrate that our models outperform standard methods for structure-aware audio-to-score alignment.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.