Using Bayesian Modelling to Predict Software Incidents (2102.00293v1)
Abstract: Traditionally, fault- or event-tree analyses or FMEAs have been used to estimate the probability of a safety-critical device creating a dangerous condition. However, these analysis techniques are less effective for systems primarily reliant on software, and are perhaps least effective in Safety of the Intended Functionality (SOTIF) environments, where the failure or dangerous situation occurs even though all components behaved as designed. This paper describes an approach we are considering at BlackBerry QNX: using Bayesian Belief Networks to predict defects in embedded software, and reports on early results from our research.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.