Papers
Topics
Authors
Recent
Search
2000 character limit reached

Performance Measurements within Asynchronous Task-based Runtime Systems: A Double White Dwarf Merger as an Application

Published 30 Jan 2021 in cs.PF | (2102.00223v4)

Abstract: Analyzing performance within asynchronous many-task-based runtime systems is challenging because millions of tasks are launched concurrently. Especially for long-term runs the amount of data collected becomes overwhelming. We study HPX and its performance-counter framework and APEX to collect performance data and energy consumption. We added HPX application-specific performance counters to the Octo-Tiger full 3D AMR astrophysics application. This enables the combined visualization of physical and performance data to highlight bottlenecks with respect to different solvers. We examine the overhead introduced by these measurements, which is around 1%, with respect to the overall application runtime. We perform a convergence study for four different levels of refinement and analyze the application's performance with respect to adaptive grid refinement. The measurements' overheads are small, enabling the combined use of performance data and physical properties with the goal of improving the code's performance. All of these measurements were obtained on NERSC's Cori, Louisiana Optical Network Infrastructure's QueenBee2, and Indiana University's Big Red 3.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.