Papers
Topics
Authors
Recent
2000 character limit reached

SNR-adaptive deep joint source-channel coding for wireless image transmission

Published 30 Jan 2021 in eess.SP and eess.IV | (2102.00202v2)

Abstract: Considering the problem of joint source-channel coding (JSCC) for multi-user transmission of images over noisy channels, an autoencoder-based novel deep joint source-channel coding scheme is proposed in this paper. In the proposed JSCC scheme, the decoder can estimate the signal-to-noise ratio (SNR) and use it to adaptively decode the transmitted image. Experiments demonstrate that the proposed scheme achieves impressive results in adaptability for different SNRs and is robust to the decoder's estimation error of the SNR. To the best of our knowledge, this is the first deep JSCC scheme that focuses on the adaptability for different SNRs and can be applied to multi-user scenarios.

Citations (44)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.