Papers
Topics
Authors
Recent
Search
2000 character limit reached

Settling the Sharp Reconstruction Thresholds of Random Graph Matching

Published 29 Jan 2021 in math.ST, cs.IT, math.IT, stat.ML, and stat.TH | (2102.00082v3)

Abstract: This paper studies the problem of recovering the hidden vertex correspondence between two edge-correlated random graphs. We focus on the Gaussian model where the two graphs are complete graphs with correlated Gaussian weights and the Erd\H{o}s-R\'enyi model where the two graphs are subsampled from a common parent Erd\H{o}s-R\'enyi graph $\mathcal{G}(n,p)$. For dense graphs with $p=n{-o(1)}$, we prove that there exists a sharp threshold, above which one can correctly match all but a vanishing fraction of vertices and below which correctly matching any positive fraction is impossible, a phenomenon known as the "all-or-nothing" phase transition. Even more strikingly, in the Gaussian setting, above the threshold all vertices can be exactly matched with high probability. In contrast, for sparse Erd\H{o}s-R\'enyi graphs with $p=n{-\Theta(1)}$, we show that the all-or-nothing phenomenon no longer holds and we determine the thresholds up to a constant factor. Along the way, we also derive the sharp threshold for exact recovery, sharpening the existing results in Erd\H{o}s-R\'enyi graphs. The proof of the negative results builds upon a tight characterization of the mutual information based on the truncated second-moment computation and an "area theorem" that relates the mutual information to the integral of the reconstruction error. The positive results follows from a tight analysis of the maximum likelihood estimator that takes into account the cycle structure of the induced permutation on the edges.

Citations (65)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.