2000 character limit reached
Symmetric equilibrium of multi-agent reinforcement learning in repeated prisoner's dilemma (2101.11861v3)
Published 28 Jan 2021 in cs.GT and physics.soc-ph
Abstract: We investigate the repeated prisoner's dilemma game where both players alternately use reinforcement learning to obtain their optimal memory-one strategies. We theoretically solve the simultaneous Bellman optimality equations of reinforcement learning. We find that the Win-stay Lose-shift strategy, the Grim strategy, and the strategy which always defects can form symmetric equilibrium of the mutual reinforcement learning process amongst all deterministic memory-one strategies.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.