Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incentive Mechanism Design for Federated Learning: Hedonic Game Approach (2101.09673v2)

Published 24 Jan 2021 in cs.GT

Abstract: Incentive mechanism design is crucial for enabling federated learning. We deal with clustering problem of agents contributing to federated learning setting. Assuming agents behave selfishly, we model their interaction as a stable coalition partition problem using hedonic games where agents and clusters are the players and coalitions, respectively. We address the following question: is there a family of hedonic games ensuring a Nash-stable coalition partition? We propose the Nash-stable set which determines the family of hedonic games possessing at least one Nash-stable partition, and analyze the conditions of non-emptiness of the Nash-stable set. Besides, we deal with the decentralized clustering. We formulate the problem as a non-cooperative game and prove the existence of a potential game.

Citations (11)

Summary

We haven't generated a summary for this paper yet.