Papers
Topics
Authors
Recent
Search
2000 character limit reached

Incentive Mechanism Design for Federated Learning: Hedonic Game Approach

Published 24 Jan 2021 in cs.GT | (2101.09673v2)

Abstract: Incentive mechanism design is crucial for enabling federated learning. We deal with clustering problem of agents contributing to federated learning setting. Assuming agents behave selfishly, we model their interaction as a stable coalition partition problem using hedonic games where agents and clusters are the players and coalitions, respectively. We address the following question: is there a family of hedonic games ensuring a Nash-stable coalition partition? We propose the Nash-stable set which determines the family of hedonic games possessing at least one Nash-stable partition, and analyze the conditions of non-emptiness of the Nash-stable set. Besides, we deal with the decentralized clustering. We formulate the problem as a non-cooperative game and prove the existence of a potential game.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.