Papers
Topics
Authors
Recent
2000 character limit reached

Experimentally Realizing Efficient Quantum Control with Reinforcement Learning

Published 22 Jan 2021 in quant-ph | (2101.09020v1)

Abstract: Robust and high-precision quantum control is crucial but challenging for scalable quantum computation and quantum information processing. Traditional adiabatic control suffers severe limitations on gate performance imposed by environmentally induced noise because of a quantum system's limited coherence time. In this work, we experimentally demonstrate an alternative approach {to quantum control} based on deep reinforcement learning (DRL) on a trapped ${171}\mathrm{Yb}{+}$ ion. In particular, we find that DRL leads to fast and robust {digital quantum operations with running time bounded by shortcuts to adiabaticity} (STA). Besides, we demonstrate that DRL's robustness against both Rabi and detuning errors can be achieved simultaneously without any input from STA. Our experiments reveal a general framework of digital quantum control, leading to a promising enhancement in quantum information processing.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.