Papers
Topics
Authors
Recent
Search
2000 character limit reached

COLLIDE-PRED: Prediction of On-Road Collision From Surveillance Videos

Published 21 Jan 2021 in cs.CV | (2101.08463v1)

Abstract: Predicting on-road abnormalities such as road accidents or traffic violations is a challenging task in traffic surveillance. If such predictions can be done in advance, many damages can be controlled. Here in our wok, we tried to formulate a solution for automated collision prediction in traffic surveillance videos with computer vision and deep networks. It involves object detection, tracking, trajectory estimation, and collision prediction. We propose an end-to-end collision prediction system, named as COLLIDE-PRED, that intelligently integrates the information of past and future trajectories of moving objects to predict collisions in videos. It is a pipeline that starts with object detection, which is used for object tracking, and then trajectory prediction is performed which concludes by collision detection. The probable place of collision, and the objects those may cause the collision, both can be identified correctly with COLLIDE-PRED. The proposed method is experimentally validated with a number of different videos and proves to be effective in identifying accident in advance.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.