Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalised Recommendations in Mental Health Apps: The Impact of Autonomy and Data Sharing (2101.08375v1)

Published 21 Jan 2021 in cs.HC

Abstract: The recent growth of digital interventions for mental well-being prompts a call-to-arms to explore the delivery of personalised recommendations from a user's perspective. In a randomised placebo study with a two-way factorial design, we analysed the difference between an autonomous user experience as opposed to personalised guidance, with respect to both users' preference and their actual usage of a mental well-being app. Furthermore, we explored users' preference in sharing their data for receiving personalised recommendations, by juxtaposing questionnaires and mobile sensor data. Interestingly, self-reported results indicate the preference for personalised guidance, whereas behavioural data suggests that a blend of autonomous choice and recommended activities results in higher engagement. Additionally, although users reported a strong preference of filling out questionnaires instead of sharing their mobile data, the data source did not have any impact on the actual app use. We discuss the implications of our findings and provide takeaways for designers of mental well-being applications.

Citations (12)

Summary

We haven't generated a summary for this paper yet.