Papers
Topics
Authors
Recent
Search
2000 character limit reached

Local Complexity of Polygons

Published 19 Jan 2021 in cs.CG, cs.DM, and cs.DS | (2101.07554v1)

Abstract: Many problems in Discrete and Computational Geometry deal with simple polygons or polygonal regions. Many algorithms and data-structures perform considerably faster, if the underlying polygonal region has low local complexity. One obstacle to make this intuition rigorous, is the lack of a formal definition of local complexity. Here, we give two possible definitions and show how they are related in a combinatorial sense. We say that a polygon $P$ has point visibility width $w=pvw$, if there is no point $q\in P$ that sees more than $w$ reflex vertices. We say that a polygon $P$ has chord visibility width $w=cvw $, if there is no chord $c=\textrm{seg}(a,b)\subset P$ that sees more than w reflex vertices. We show that [ cvw \leq pvw {O( pvw )},] for any simple polygon. Furthermore, we show that there exists a simple polygon with [ cvw \geq 2{\Omega( pvw )}.]

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.