Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly-Supervised Hierarchical Models for Predicting Persuasive Strategies in Good-faith Textual Requests (2101.06351v1)

Published 16 Jan 2021 in cs.CL and cs.CY

Abstract: Modeling persuasive language has the potential to better facilitate our decision-making processes. Despite its importance, computational modeling of persuasion is still in its infancy, largely due to the lack of benchmark datasets that can provide quantitative labels of persuasive strategies to expedite this line of research. To this end, we introduce a large-scale multi-domain text corpus for modeling persuasive strategies in good-faith text requests. Moreover, we design a hierarchical weakly-supervised latent variable model that can leverage partially labeled data to predict such associated persuasive strategies for each sentence, where the supervision comes from both the overall document-level labels and very limited sentence-level labels. Experimental results showed that our proposed method outperformed existing semi-supervised baselines significantly. We have publicly released our code at https://github.com/GT-SALT/Persuasion_Strategy_WVAE.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com