Papers
Topics
Authors
Recent
Search
2000 character limit reached

Weakly-Supervised Hierarchical Models for Predicting Persuasive Strategies in Good-faith Textual Requests

Published 16 Jan 2021 in cs.CL and cs.CY | (2101.06351v1)

Abstract: Modeling persuasive language has the potential to better facilitate our decision-making processes. Despite its importance, computational modeling of persuasion is still in its infancy, largely due to the lack of benchmark datasets that can provide quantitative labels of persuasive strategies to expedite this line of research. To this end, we introduce a large-scale multi-domain text corpus for modeling persuasive strategies in good-faith text requests. Moreover, we design a hierarchical weakly-supervised latent variable model that can leverage partially labeled data to predict such associated persuasive strategies for each sentence, where the supervision comes from both the overall document-level labels and very limited sentence-level labels. Experimental results showed that our proposed method outperformed existing semi-supervised baselines significantly. We have publicly released our code at https://github.com/GT-SALT/Persuasion_Strategy_WVAE.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.