Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Subgraph complementation and minimum rank (2101.06180v4)

Published 15 Jan 2021 in math.CO

Abstract: Any finite simple graph $G = (V,E)$ can be represented by a collection $\mathscr{C}$ of subsets of $V$ such that $uv\in E$ if and only if $u$ and $v$ appear together in an odd number of sets in $\mathscr{C}$. Let $c_2(G)$ denote the minimum cardinality of such a collection. This invariant is equivalent to the minimum dimension of a faithful orthogonal representation of $G$ over $\mathbb{F}_2$ and is closely connected to the minimum rank of $G$. We show that $c_2(G) = \operatorname{mr}(G,\mathbb{F}_2)$ when $\operatorname{mr}(G,\mathbb{F}_2)$ is odd, or when $G$ is a forest. Otherwise, $\operatorname{mr}(G,\mathbb{F}_2)\leq c_2(G)\leq \operatorname{mr}(G,\mathbb{F}_2)+1$. Furthermore, we show that the following are equivalent for any graph $G$ with at least one edge: i. $c_2(G)=\operatorname{mr}(G,\mathbb{F}_2)+1$; ii. the adjacency matrix of $G$ is the unique matrix of rank $\operatorname{mr}(G,\mathbb{F}_2)$ which fits $G$ over $\mathbb{F}_2$; iii. there is a minimum collection $\mathscr{C}$ as described in which every vertex appears an even number of times; and iv. for every component $G'$ of $G$, $c_2(G') = \operatorname{mr}(G',\mathbb{F}_2) + 1$. We also show that, for these graphs, $\operatorname{mr}(G,\mathbb{F}_2)$ is twice the minimum number of tricliques whose symmetric difference of edge sets is $E$. Additionally, we provide a set of upper bounds on $c_2(G)$ in terms of the order, size, and vertex cover number of $G$. Finally, we show that the class of graphs with $c_2(G)\leq k$ is hereditary and finitely defined. For odd $k$, the sets of minimal forbidden induced subgraphs are the same as those for the property $\operatorname{mr}(G,\mathbb{F}_2)\leq k$, and we exhibit this set for $c_2(G)\leq2$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.