Papers
Topics
Authors
Recent
2000 character limit reached

Walk in Wild: An Ensemble Approach for Hostility Detection in Hindi Posts

Published 15 Jan 2021 in cs.CL | (2101.06004v1)

Abstract: As the reach of the internet increases, pejorative terms started flooding over social media platforms. This leads to the necessity of identifying hostile content on social media platforms. Identification of hostile contents on low-resource languages like Hindi poses different challenges due to its diverse syntactic structure compared to English. In this paper, we develop a simple ensemble based model on pre-trained mBERT and popular classification algorithms like Artificial Neural Network (ANN) and XGBoost for hostility detection in Hindi posts. We formulated this problem as binary classification (hostile and non-hostile class) and multi-label multi-class classification problem (for more fine-grained hostile classes). We received third overall rank in the competition and weighted F1-scores of ~0.969 and ~0.61 on the binary and multi-label multi-class classification tasks respectively.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.