Papers
Topics
Authors
Recent
Search
2000 character limit reached

Should Ensemble Members Be Calibrated?

Published 13 Jan 2021 in cs.LG and stat.ML | (2101.05397v1)

Abstract: Underlying the use of statistical approaches for a wide range of applications is the assumption that the probabilities obtained from a statistical model are representative of the "true" probability that event, or outcome, will occur. Unfortunately, for modern deep neural networks this is not the case, they are often observed to be poorly calibrated. Additionally, these deep learning approaches make use of large numbers of model parameters, motivating the use of Bayesian, or ensemble approximation, approaches to handle issues with parameter estimation. This paper explores the application of calibration schemes to deep ensembles from both a theoretical perspective and empirically on a standard image classification task, CIFAR-100. The underlying theoretical requirements for calibration, and associated calibration criteria, are first described. It is shown that well calibrated ensemble members will not necessarily yield a well calibrated ensemble prediction, and if the ensemble prediction is well calibrated its performance cannot exceed that of the average performance of the calibrated ensemble members. On CIFAR-100 the impact of calibration for ensemble prediction, and associated calibration is evaluated. Additionally the situation where multiple different topologies are combined together is discussed.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.