Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Kan extensions are partial colimits (2101.04531v2)

Published 12 Jan 2021 in math.CT

Abstract: One way of interpreting a left Kan extension is as taking a kind of "partial colimit", whereby one replaces parts of a diagram by their colimits. We make this intuition precise by means of the "partial evaluations" sitting in the so-called bar construction of monads. The (pseudo)monads of interest for forming colimits are the monad of diagrams and the monad of small presheaves, both on the (huge) category CAT of locally small categories. Throughout, particular care is taken to handle size issues, which are notoriously delicate in the context of free cocompletion. We spell out, with all 2-dimensional details, the structure maps of these pseudomonads. Then, based on a detailed general proof of how the "restriction-of-scalars" construction of monads extends to the case of pseudoalgebras over pseudomonads, we define a morphism of monads between them, which we call "image". This morphism allows us in particular to generalize the idea of "confinal functors" i.e. of functors which leave colimits invariant in an absolute way. This generalization includes the concept of absolute colimit as a special case. The main result of this paper spells out how a pointwise left Kan extension of a diagram corresponds precisely to a partial evaluation of its colimit. This categorical result is analogous to what happens in the case of probability monads, where a conditional expectation of a random variable corresponds to a partial evaluation of its center of mass.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.