Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Aspects of Provenance Queries (2101.04432v1)

Published 12 Jan 2021 in cs.DB

Abstract: Given a query result of a big database, why-provenance can be used to calculate the necessary part of this database, consisting of so-called witnesses. If this database consists of personal data, privacy protection has to prevent the publication of these witnesses. This implies a natural conflict of interest between publishing original data (provenance) and protecting these data (privacy). In this paper, privacy goes beyond the concept of personal data protection. The paper gives an extended definition of privacy as intellectual property protection. If the provenance information is not sufficient to reconstruct a query result, additional data such as witnesses or provenance polynomials have to be published to guarantee traceability. Nevertheless, publishing this provenance information might be a problem if (significantly) more tuples than necessary can be derived from the original database. At this point, it is already possible to violate privacy policies, provided that quasi identifiers are included in this provenance information. With this poster, we point out fundamental problems and discuss first proposals for solutions.

Citations (4)

Summary

We haven't generated a summary for this paper yet.