Papers
Topics
Authors
Recent
2000 character limit reached

PowerEvaluationBALD: Efficient Evaluation-Oriented Deep (Bayesian) Active Learning with Stochastic Acquisition Functions

Published 10 Jan 2021 in cs.LG and math.OC | (2101.03552v2)

Abstract: We develop BatchEvaluationBALD, a new acquisition function for deep Bayesian active learning, as an expansion of BatchBALD that takes into account an evaluation set of unlabeled data, for example, the pool set. We also develop a variant for the non-Bayesian setting, which we call Evaluation Information Gain. To reduce computational requirements and allow these methods to scale to larger acquisition batch sizes, we introduce stochastic acquisition functions that use importance sampling of tempered acquisition scores. We call this method PowerEvaluationBALD. We show in a few initial experiments that PowerEvaluationBALD works on par with BatchEvaluationBALD, which outperforms BatchBALD on Repeated MNIST (MNISTx2), while massively reducing the computational requirements compared to BatchBALD or BatchEvaluationBALD.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.