Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generation of Traffic Flows in Multi-Agent Traffic Simulation with Agent Behavior Model based on Deep Reinforcement Learning (2101.03230v2)

Published 26 Dec 2020 in cs.MA, cs.SY, and eess.SY

Abstract: In multi-agent based traffic simulation, agents are always supposed to move following existing instructions, and mechanically and unnaturally imitate human behavior. The human drivers perform acceleration or deceleration irregularly all the time, which seems unnecessary in some conditions. For letting agents in traffic simulation behave more like humans and recognize other agents' behavior in complex conditions, we propose a unified mechanism for agents learn to decide various accelerations by using deep reinforcement learning based on a combination of regenerated visual images revealing some notable features, and numerical vectors containing some important data such as instantaneous speed. By handling batches of sequential data, agents are enabled to recognize surrounding agents' behavior and decide their own acceleration. In addition, we can generate a traffic flow behaving diversely to simulate the real traffic flow by using an architecture of fully decentralized training and fully centralized execution without violating Markov assumptions.

Summary

We haven't generated a summary for this paper yet.